В каких случаях вы будете применять ROC-кривую для оценки модели?
ROC-кривая (receiver operating characteristics curve) базируется на следующих метриках: ◽TPR (true positive rate) — доля положительных объектов, правильно предсказанных положительными; ▪️FPR (false positive rate) — доля отрицательных объектов, неправильно предсказанных положительными.
Именно в осях TPR/FPR и строится кривая. Эти метрики зависят от порога. Порогом мы называем значение, при котором по выходу модели решаем, к какому классу отнести объект. Так, выбор порога позволяет нам регулировать ошибки на объектах обоих классов. Его изменение позволяет увидеть, как меняются значения TPR и FPR, что и отражается на ROC-кривой.
Известно, что чем лучше модель разделяет два класса, тем больше площадь (area under curve) под ROC-кривой. Мы можем использовать эту площадь в качестве метрики и называть её AUC.
В каких случаях лучше отдать предпочтение этой метрике? Допустим, у нас есть клиент — сотовый оператор, который хочет знать, будет ли клиент пользоваться его услугами через месяц. При этом компании интересно упорядочить клиентов по вероятности прекращения обслуживания. Именно в таких задачах, где нам важна не метка сама по себе, а правильный порядок на объектах, имеет смысл применять AUC. Кроме того, метрика полезна в условиях несбалансированных классов или когда стоимость разных типов ошибок различна.
В каких случаях вы будете применять ROC-кривую для оценки модели?
ROC-кривая (receiver operating characteristics curve) базируется на следующих метриках: ◽TPR (true positive rate) — доля положительных объектов, правильно предсказанных положительными; ▪️FPR (false positive rate) — доля отрицательных объектов, неправильно предсказанных положительными.
Именно в осях TPR/FPR и строится кривая. Эти метрики зависят от порога. Порогом мы называем значение, при котором по выходу модели решаем, к какому классу отнести объект. Так, выбор порога позволяет нам регулировать ошибки на объектах обоих классов. Его изменение позволяет увидеть, как меняются значения TPR и FPR, что и отражается на ROC-кривой.
Известно, что чем лучше модель разделяет два класса, тем больше площадь (area under curve) под ROC-кривой. Мы можем использовать эту площадь в качестве метрики и называть её AUC.
В каких случаях лучше отдать предпочтение этой метрике? Допустим, у нас есть клиент — сотовый оператор, который хочет знать, будет ли клиент пользоваться его услугами через месяц. При этом компании интересно упорядочить клиентов по вероятности прекращения обслуживания. Именно в таких задачах, где нам важна не метка сама по себе, а правильный порядок на объектах, имеет смысл применять AUC. Кроме того, метрика полезна в условиях несбалансированных классов или когда стоимость разных типов ошибок различна.
#машинноe_обучение
BY Библиотека собеса по Data Science | вопросы с собеседований
Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283
That growth environment will include rising inflation and interest rates. Those upward shifts naturally accompany healthy growth periods as the demand for resources, products and services rise. Importantly, the Federal Reserve has laid out the rationale for not interfering with that natural growth transition.It's not exactly a fad, but there is a widespread willingness to pay up for a growth story. Classic fundamental analysis takes a back seat. Even negative earnings are ignored. In fact, positive earnings seem to be a limiting measure, producing the question, "Is that all you've got?" The preference is a vision of untold riches when the exciting story plays out as expected.
Spiking bond yields driving sharp losses in tech stocks
A spike in interest rates since the start of the year has accelerated a rotation out of high-growth technology stocks and into value stocks poised to benefit from a reopening of the economy. The Nasdaq has fallen more than 10% over the past month as the Dow has soared to record highs, with a spike in the 10-year US Treasury yield acting as the main catalyst. It recently surged to a cycle high of more than 1.60% after starting the year below 1%. But according to Jim Paulsen, the Leuthold Group's chief investment strategist, rising interest rates do not represent a long-term threat to the stock market. Paulsen expects the 10-year yield to cross 2% by the end of the year.
A spike in interest rates and its impact on the stock market depends on the economic backdrop, according to Paulsen. Rising interest rates amid a strengthening economy "may prove no challenge at all for stocks," Paulsen said.
Библиотека собеса по Data Science | вопросы с собеседований from hk